China manufacturer Y3150 Y3180 Automatic Gear Cutter 6 Modulus 8 Modulus Gear Hobbing Machine Price wholesaler

Product Description

Product Description

GEAR CUTTER
HSS And Tungsten Carbide

Product Parameters

Parameters Of Gear Cutter
Customized Support: Tungsten Carbide Heat treatment 64 – 67HRC
Flute Straight And Helical Flute Material: HSS, GES, TGS, Customize
Precision: High Precision Coating TiN, TiAlN, TiCN, AlCrN and so on
Customize OEM ODM Availabe Certification ISO9001(2008)

 

Regular Size Of Gear Cutter (Customize)
Module(mm) Outside Diameter(mm) Overall Diameter(mm) Hole Diameter(mm)
0.15 25 10 8
0.30 25 15 8
0.60 25 15 8
0.80 25 25 8
0.9 32 32 13
1.0 32 32 13

Support customization. Welcome to consult.

Detailed Photos

Product Details
Not afraid of high temperature
Tungsten steel alloy serration
Sharp serrations and better milling
Smooth surface without burrs

Product Display

Support customization. Welcome to consult.
Customized content:
Number of blades, coating, length, LOGO, etc.

Company Profile

Company Profile
HangZhou Easy Joint Import&Export CO.,LTD. is a company integrating industry and trade, its factory was established in 1999,specializing in the production of carbide rotary cutting tools, our products are widely used in automotive, machining, aerospace and some other fields. We have Germany,American,Japanese axis CNC tool grinder, axis CNC thread grinding machines and testing equipment, with strong R&D and testing capabilities, we have passed ISO9001-2000 quality system certification standards.

Our factory topped the China Aviation Industry Corporation Tool centralized procurement list,our products are not only famous in domestic market, but also exported to dozens contries in the world.HangZhou Easy Joint Import&Export CO.,LTD. is a company integrating industry and trade, its factory was established in 1999, specializing in the production of carbide rotary cutting tools, our products are widely used in automotive, machining, aerospace and some other fields.
We are factory, support OEM, ODM, OBM customization.

Our Advantages

High quality, Professional R&D center, Fast dispatch, Small order accepted, Global Export Expertise

Certifications

FAQ

Q1: Are you a factory or trading company?
A1: We are a factory and trading company, owned 2 different factories with 400 workers in total.

Q2: How about the Shipping Method?
A2: DHL/UPS/TNT/Fedex and other air shipments and sea shipments are all workable. In 1 words, we could do any shipments you wanted.

Q3: How about the delivery date?
A3: In General, the delivery date will be 3-5 working days for normal buy quantity. But if bigger order, please check us further.HSS And Tungsten Carbide

Q4: How about the label and the logo?HSS And Tungsten Carbide
A4: Customize label and logo is workable.

Q5: How about the MOQ ?HSS And Tungsten Carbide
A5: Lower MOQ of 5PCS per style.HSS And Tungsten Carbide
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard: Standard
Coating: Coating
Worm: Involute Worm
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

worm gear

How does a worm gear impact the overall efficiency of a system?

A worm gear has a significant impact on the overall efficiency of a system due to its unique design and mechanical characteristics. Here’s a detailed explanation of how a worm gear affects system efficiency:

A worm gear consists of a worm (a screw-like gear) and a worm wheel (a cylindrical gear with teeth). When the worm rotates, it engages with the teeth of the worm wheel, causing the wheel to rotate. The main factors influencing the efficiency of a worm gear system are:

  • Gear Reduction Ratio: Worm gears are known for their high gear reduction ratios, which are the ratio of the number of teeth on the worm wheel to the number of threads on the worm. This high reduction ratio allows for significant speed reduction and torque multiplication. However, the larger the reduction ratio, the more frictional losses occur, resulting in lower efficiency.
  • Mechanical Efficiency: The mechanical efficiency of a worm gear system refers to the ratio of the output power to the input power, accounting for losses due to friction and inefficiencies in power transmission. Worm gears typically have lower mechanical efficiency compared to other gear types, primarily due to the sliding action between the worm and the worm wheel teeth. This sliding contact generates higher frictional losses, resulting in reduced efficiency.
  • Self-Locking: One advantageous characteristic of worm gears is their self-locking property. Due to the angle of the worm thread, the worm gear system can prevent the reverse rotation of the output shaft without the need for additional braking mechanisms. While self-locking is beneficial for maintaining position and preventing backdriving, it also increases the frictional losses and reduces the efficiency when the gear system needs to be driven in the opposite direction.
  • Lubrication: Proper lubrication is crucial for minimizing friction and maintaining efficient operation of a worm gear system. Inadequate or improper lubrication can lead to increased friction and wear, resulting in lower efficiency. Regular lubrication maintenance, including monitoring viscosity, cleanliness, and lubricant condition, is essential for optimizing efficiency and reducing power losses.
  • Design and Manufacturing Quality: The design and manufacturing quality of the worm gear components play a significant role in determining the system’s efficiency. Precise machining, accurate tooth profiles, proper gear meshing, and appropriate surface finishes contribute to reducing friction and enhancing efficiency. High-quality materials with suitable hardness and smoothness also impact the overall efficiency of the system.
  • Operating Conditions: The operating conditions, such as the load applied, rotational speed, and temperature, can affect the efficiency of a worm gear system. Higher loads, faster speeds, and extreme temperatures can increase frictional losses and reduce overall efficiency. Proper selection of the worm gear system based on the expected operating conditions is critical for optimizing efficiency.

It’s important to note that while worm gears may have lower mechanical efficiency compared to some other gear types, they offer unique advantages such as high gear reduction ratios, compact design, and self-locking capabilities. The suitability of a worm gear system depends on the specific application requirements and the trade-offs between efficiency, torque transmission, and other factors.

When designing or selecting a worm gear system, it is essential to consider the desired balance between efficiency, torque requirements, positional stability, and other performance factors to ensure optimal overall system efficiency.

worm gear

Can worm gears be used in both horizontal and vertical orientations?

Yes, worm gears can be used in both horizontal and vertical orientations. Here’s a detailed explanation of the suitability of worm gears for different orientations:

1. Horizontal Orientation: Worm gears are commonly used in horizontal orientations and are well-suited for such applications. In a horizontal configuration, the worm gear’s weight is primarily supported by the bearings and housing. The lubrication and load-carrying capabilities of the gear design are optimized for horizontal operation, allowing for efficient power transmission and torque generation. Horizontal worm gear applications include conveyor systems, mixers, mills, and many other industrial machinery setups.

2. Vertical Orientation: Worm gears can also be used in vertical orientations, although there are some additional considerations to address in such cases. In a vertical configuration, the weight of the worm gear exerts an axial force on the worm shaft, which can introduce additional load and affect the gear’s performance. To ensure proper operation in a vertical orientation, the following factors should be considered:

  • Thrust load handling: Vertical orientations impose a thrust load on the worm gear due to the weight of the gear and any additional external loads. The gear design should be capable of handling and transmitting this thrust load without excessive wear or deformation. Proper bearing selection and lubrication are crucial to support the axial load and maintain optimal performance.
  • Lubrication: Lubrication becomes even more critical in vertical worm gear applications. Adequate lubrication ensures proper lubricant film formation to minimize friction, reduce wear, and dissipate heat generated during operation. Careful consideration should be given to the lubricant type, viscosity, and lubrication method to ensure effective lubrication, particularly in the upper parts of the gear where lubricant distribution may be more challenging.
  • Backlash control: In vertical orientations, gravity can cause the load to act on the gear in the opposite direction, potentially leading to increased backlash. Proper gear design, including tooth geometry and clearance adjustments, can help minimize backlash and ensure precise motion control and positional stability.
  • Bearing selection: The choice of bearings becomes crucial in vertical worm gear applications. Thrust bearings or combinations of thrust and radial bearings may be required to handle the axial and radial loads effectively. Bearings with appropriate load-carrying capacities and stiffness are selected to ensure smooth operation and minimize deflection under vertical loads.
  • Sealing: Vertical orientations may require additional sealing measures to prevent lubricant leakage and ingress of contaminants. Proper sealing and protection mechanisms, such as seals or gaskets, should be implemented to maintain the integrity of the gear system and ensure reliable operation.

In summary, worm gears can be utilized in both horizontal and vertical orientations. However, certain considerations related to thrust load handling, lubrication, backlash control, bearing selection, and sealing should be taken into account for vertical applications. By addressing these factors appropriately, worm gears can effectively transmit power and torque, whether in horizontal or vertical configurations.

worm gear

How does a worm gear differ from other types of gears?

A worm gear differs from other types of gears in several ways. Here are the key differences:

  1. Gear Configuration: A worm gear consists of a threaded worm and a mating gear, known as the worm wheel or worm gear. The worm has a helical thread that meshes with the teeth of the worm wheel. In contrast, other types of gears, such as spur gears, bevel gears, and helical gears, have parallel or intersecting axes of rotation.
  2. Gear Ratio: Worm gears provide high gear reduction ratios compared to other types of gears. The ratio is determined by the number of teeth on the worm wheel and the number of threads on the worm. This high reduction ratio allows worm gears to transmit more torque while maintaining a compact size.
  3. Direction of Rotation: In a worm gear system, the worm can drive the worm wheel, but the reverse is not true. This is due to the self-locking nature of worm gears. The angle of the worm’s helical thread creates a wedging action that prevents the worm wheel from backdriving the worm. This characteristic makes worm gears suitable for applications requiring a mechanical brake or holding position.
  4. Efficiency: Worm gears typically have lower efficiency compared to other types of gears. This is primarily due to the sliding action between the worm’s threads and the worm wheel’s teeth, which leads to higher friction and energy losses. Therefore, worm gears are not ideal for applications that require high efficiency or continuous, high-speed operation.
  5. Lubrication: Worm gears require proper lubrication to reduce friction and wear. The sliding action between the worm and the worm wheel generates heat, which can affect the performance and lifespan of the gear system. Lubricants help to dissipate heat and provide a protective film between the mating surfaces, reducing friction and extending the gear’s life.
  6. Applications: Worm gears are commonly used in applications that require high gear reduction, compact size, and self-locking capabilities. They are found in various industries, including elevators, automotive steering systems, machine tools, robotics, and winding mechanisms.

Overall, the unique design and characteristics of worm gears make them suitable for specific applications where high torque, compactness, and self-locking features are essential, even though they may have lower efficiency compared to other types of gears.

China manufacturer Y3150 Y3180 Automatic Gear Cutter 6 Modulus 8 Modulus Gear Hobbing Machine Price wholesaler China manufacturer Y3150 Y3180 Automatic Gear Cutter 6 Modulus 8 Modulus Gear Hobbing Machine Price wholesaler
editor by CX 2024-04-11